Molecular Modeling 2020 lecture 17 -- Fri Mar 27

Ramachandran plot

Local structure

Handedness

SCOP -- a hierarchy

http://scop.berkeley.edu

- (1) class
- (2) fold
- (3) superfamily
- (4) family
- (5) protein
 - (6) species

SCOP's hierarchy is sequence centered

Folding -- another hierarchy?

t = time after leaving the ribosome

More about protein folding in later lectures

Structural classification viewed along the folding hierarchy

Classification

Why does local sequence predict structure?

Early in the process of folding (nsec timescale) **local structures** form in the polypeptide chain which guide the formation of tertiary structure.

Alpha helix

Right-handed helix. H-bond is from the oxygen at *i* to the nitrogen at *i*+4. α -helices have an overall dipole because the H-bonds are all in the same direction. Must be > 3 residues.

H-bond rule for donor to acceptor (NH->O): i to i+4

dipole

Helices do not look "cylindrical".

ALPHA-HELIX DIPOLE 1

 The peptide group has a strong dipole moment due to partial charges on NH and CO groups.

特例Michael Lewitt (08

Sequence pattern for the amphipathic alpha helix

- nppnnpp, where n = non-polar, p = polar
- Example:

LSELFKNLQDMLSK

The helix is held together by the hydrophobic effect. Sticks to other amphipathic helices.

Hydrophobic all on one side

beta sheets

In both parallel and anti-parallel,

sidechains alternate above and below the plane of the sheet.

Parallel beta sheet

H-bonds are not 90° to the chain.

Anti-parallel beta sheet

=0

-H

=0

- H

H-bonds are unevenly spaced. H-bonds are 90° to the chain.

Sequence patterns for beta sheet

- npnp, where n=non-polar, p=polar
- nnnn

Non-polar residues (green, purple) mostly on the face.

Charged residues (blue, red) mostly on the ends.

Secondary structure using matrices

An H-bonding pattern can be expressed using "augmented" matrix notation.

next H-bond donor	multiply by donor	multiply by acceptor	add to donor		current H- bond donor
next H-bond acceptor	multiply by donor	multiply by acceptor	add to acceptor	X	current H- bond acceptor

For example, for an alpha helix....

In a helix, donor NH is always +4 to acceptor O. ¹³

Secondary structure using matrices: antiparallel sheet

Use the augmented matrices to find the next H-bond before/after (donor,acceptor)=(102, 3) in a antiparallel sheet

Secondary structure using matrices: parallel sheet

С

Ν

Use the augmented matrix to find the next H-bond before/after (donor,acceptor)=(103, 2) in a parallel sheet

The Ramachandran Plot

Predicting secondary structure from primary structure

assumes

Secondary structures have sequence patterns
Those patterns are conserved across homolog proteins.

predicting burial

Early methods for • predicting the structure of a protein used the chemical characteristics of amino acids -- hydrophobic versus hydrophilic. If a stretch of aminoacids was hydrophobic, it was most often found in the core of the protein, and the opposite was true if a stretch was hydrophilic. Two scales were proposed -- Kyte-Doolittle and Hopp-Woods.

	Kyte-Doolittle	Hopp-Woods
Alanine	1.8	-0.5
Arginine	-4.5	3.0
Asparagine	-3.5	0.2
Aspartic acid	-3.5	3.0
Cysteine	2.5	-1.0
Glutamine	-3.5	0.2
Glutamic acid	-3.5	3.0
Glycine	-0.4	0.0
Histidine	-3.2	-0.5
Isoleucine	4.5	-1.8
Leucine	3.8	-1.8
Lysine	-3.9	3.0
Methionine	1.9	-1.3
Phenylalanine	2.8	-2.5
Proline	-1.6	0.0
Serine	-0.8	0.3
Threonine	-0.7	-0.4
Tryptophan	-0.9	-3.4
Tyrosine	-1.3	-2.3
Valine	4.2	-1.5
1		

Hopp TP and Woods KR: Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824, 1981. Kyte J and Doolittle RF: A simple method for displaying the hydropathic character of a protien. J Mol Biol 157:105, 1982.

Try it: http://www.vivo.colostate.edu/molkit/hydropathy/

Secondary structure is strongly conserved among even remote homologs.

		turn helix strand/sheet
+ _ Tag	Chain	1 5 10 15 20 25 30 35 40 45 50 55 60 65 70
3GBS	1: 3GBS.A	LTGGDELRDGPCKPITFIFARASTEPGLLGISTGPAVCNRLKLARS-GDVACQGVGPRYTADLPSN
3DD5	2: 3DD5.B	QSSTRNELETGSSSACPKVIYIFARASTEPGNMGISAGPIVADALERIYGANDVWVQGVGGPYLADLASN
1CEX	3: 1CEX.A	RTTRDDLINGNSASCADVIFIYARGSTETGNLG-TLGPSIASNLESAFGKDGVWIQGVGGAYRATLGDN
+ Tag	Chain	71 75 80 85 90 95 100 105 110 115 120 125 130 135 140
3GBS	1: 3GBS.A	ALPEGTSQAAIAEAQGLFEQAVSKCPDTQIVAGGYSQGTAVMNGAIKRLSADVQDKIKGVVLFGYTRNAQ
3DD5	2: 3DD5.B	FLPDGTSSAAINEARRLFTLANTKCPNAAIVSGGYSQGTAVMAGSISGLSTTIKNQIKGVVLFGYTKNLQ
1CEX	3: 1CEX.A	ALPRGTSSAAIREMLGLFQQANTKCPDATLIAGGYSQGAALAAASIEDLDSAIRDKIAGTVLFGYTKNLQ
+ _ Tag	Chain	141 145 150 155 160 165 170 175 180 185 190 195 199
3GBS	1: 3GBS.A	ERGQIANFPKDKVKVYCAVGDLVCLGTLIVAPPHFSYLSDT-GDASDFLLSQL
3DD5	2: 3DD5.B	NLGRIPNFETSKTEVYCDIADAVCYGTLFILPAHFLYQTDAAVAAPRFLQARIG
1CEX	3: 1CEX.A	NRGRIPNYPADRTKVFCNTGDLVCTGSLIVAAPHLAYGPDARGPAPEFLIEKVRAVRGS

cutinases, 48 - 53% sequence identity.

Amino acid sequence profiles have patterns in them

- Positions in homologs conserve location, side chain conformation, packing environment.
- Evolution has sampled the low energy ways to fill each position.
- Multiple sequence alignments inform us about the nature of the position.
 - buried vs exposed.
 - alpha vs beta vs loop

First make a multiple sequence alignment

		• . :		. *	: : :		
Q5E940 BOVIN	MPREDRATW	SNY <mark>F</mark> LK <mark>IIQLL</mark> DI	YPKCFIVGADNVGSK	OMOQIRMS LRGK	- AVV LMGKNTM	KAIRGHLENNPALE	76
RLA0 HUMAN	MPREDRATW	SNY <mark>F</mark> LK <mark>IIQLL</mark> DI	YPKCFIVGADNVGSK	OMOQIRMS LRGK	- AVV LM <mark>GKNT</mark> MI	KAIRGHLENNPALE	76
RLA0 MOUSE	MPREDRATW	SNY <mark>F</mark> LK <mark>IIQLL</mark> DI	YPKCFIVGADNVGSK	<mark>QMQ</mark> QIRMSLRGK	- AVV LM <mark>GKNT</mark> MH	KAIRGHLENNPALE	76
RLAO RAT	MPREDRATW	SNY <mark>F</mark> LK <mark>IIQLL</mark> DI	YPKCFIVGADNVGSK	<mark>QMQ</mark> QIRMSLRGK	- AVV LM <mark>GKNT</mark> MI	KAIRGHLENNPALE	76
RLA0 CHICK	MPREDRATW	SNY <mark>F</mark> MK <mark>I</mark> I <mark>QLL</mark> DI	YPKCFVVGADNVGSK	OMOQIRMS LRGK	- AVV LM <mark>GKNT</mark> MI	KAIRGHLENNPALE	76
RLA0 RANSY	MPREDRATW	SNY <mark>F</mark> LK <mark>IIQLL</mark> DI	YPKCFIVGADNVGSK	OMOQIRMS LRGK	- AVV LM <mark>GKNT</mark> MI	KAIRGHLENNSALE	76
Q7ZUG3_BRARE	MPREDRATW	SNY <mark>F</mark> LK <mark>IIQLL</mark> DI	YPKCFIVGADNVGSK	OMOT IRLS LRGK	- AVV LM <mark>GKNT</mark> MI	KAIRGHLENNPALE	76
RLA0 ICTPU	MPREDRATW	SNY <mark>F</mark> LK <mark>I</mark> I <mark>QLL</mark> NI	YPKCFIVGADNVGSK	OMOT IRLS LRGK	- AIV LM <mark>GKNT</mark> MH	KAIRGHLENNPALE	76
RLA0 DROME	MVRENKAAW	KAQY <mark>F</mark> IK V V <mark>E</mark> LFDH	F <mark>PKCFIVGAD</mark> NVG <mark>S</mark> K	<mark>omo</mark> n irts irgl·	- AVV LM <mark>GKNT</mark> MH	KAIRGHLENNPQLE	76
RLA0_DICDI	MSGAG-SKR	KLF <mark>I</mark> EK <mark>A</mark> TKLFT	YDKMIVAEA <mark>D</mark> FV <mark>GS</mark> S	<mark>QLQ</mark> KIRKSIRGI	- <mark>GAV</mark> LM <mark>GK</mark> KTM	KVIRDLADSKPELD	75
Q54LP0_DICDI	MS <mark>G</mark> AG-SKR	KNVF <mark>I</mark> EK <mark>A</mark> TKLFTI	YDKMIVAEA <mark>D</mark> FV <mark>GS</mark> S	QLQKIRKSIRGI	- <mark>GAV LMGK</mark> K <mark>TM</mark> []	KVIRDLADSKPELD	75
RLA0 PLAF8	MAKLSKQQK	QMY <mark>I</mark> EKLSSLIQ	Q <mark>Y</mark> SKILIVHV <mark>D</mark> NVG <mark>S</mark> N	<mark>om</mark> as vrks lrgk	- ATILM <mark>GKNT</mark> RII	TALKKNLQAVPQIE	76
RLA0_SULAC	<mark>MIG</mark> LAVTTTKK <mark>IA</mark> KW	VDEVAELTEKL KT	HKTIIIAN IEGFPADI	KLHE IRKKLRGK	- ADIKVTKNNL []	IALKNAGYDTK	79
RLA0 SULTO	<mark>M</mark> RI <mark>M</mark> AVITQERK <mark>IA</mark> KW	KIEEVKELE <mark>Q</mark> KLRE	YHT IIIAN I <mark>EG</mark> FPADI	K <mark>L</mark> HD <mark>IR</mark> KK MRGM	- AEIKVTKNTLT(IAAKNAGLDVS	80
RLA0_SULSO	<mark>M</mark> KR <mark>L</mark> ALALKQRK <mark>VA</mark> SW	KLEEVKELT <mark>ELI</mark> K)	ISNT ILIGNLEGFPADI	K <mark>L</mark> HE IRKK LRGK	- ATIKVTKNTLEI	IAAKNAGIDIE	80
RLA0_AERPE	MSVVSLVGQMYKREKPIPEW	TLMLRELE <mark>ELF</mark> SI	(HRVVLFADLT <mark>GTPT</mark> F)	V V <mark>Q</mark> R V <mark>R</mark> KK L WKK	- <mark>YPMMVAK</mark> KRI	RAMKAAGLE LDDN	86
RLA0 PYRAE	- MMLAIGKRRYVRT RQ <mark>YP</mark> AR	KVKI <mark>V</mark> SEAT <mark>ELL</mark> QH	(YPYVFLFDLH <mark>G</mark> LS <mark>S</mark> R)	ILHE <mark>YR</mark> YR L <mark>R</mark> RY	- <mark>GVIKIIKPT</mark> LFI	IAFTKVYGGIPAE	85
RLA0_METAC	MAEERHHTEHIPQW	KDE <mark>IENIKELI</mark> QS	HKYF <mark>GMVGIEGI</mark> LATI	K <mark>MQ</mark> K IRRD LKDV	- AVLKVSRNTL	RALNQLGET IP	78
RLA0_METMA	MAEERHHTEHIPQW	KDE <mark>IENIKELI</mark> QS	HKYF <mark>GMV</mark> RIEGILATI	K IQK IRRD LKDV	- AVL <mark>KVSRNT</mark> LTI	RALNQLGESIP	78
RLA0_ARCFU	PPEY	KVRAVEE IKRMISS	K <mark>PVVAIV</mark> SFRNVPAG	QMQKIRREF <mark>RG</mark> K	- AEIKVVKNTLLI	RALDALGGDYL	75
RLA0_METKA	MAYKAKGQPPSGYEPKVAEW	KRREVKELK <mark>ELM</mark> DE	YENVGLVDLEGIPAP	QLQE IRAK LRERI	D <mark>TIIRMSRNT</mark> LAI	I <mark>AL</mark> EEKLDER <mark>P</mark> ELE	88
RLA0_METTH	MAHVAEW	KKE <mark>V</mark> QELHDLIK	YEVVGIANLADIPAR	<mark>QLQ</mark> KMRQT LRDS	- ALI <mark>R</mark> M <mark>SK</mark> KTLIS	LALEKAGRELENVD	74
RLA0_METTL	<mark>M</mark> ITAESEHK <mark>IAP</mark> W	KIEE <mark>V</mark> NK <mark>L</mark> K <mark>ELL</mark> KM	I <mark>G</mark> QI <mark>VALV</mark> DMMEVPAR	QLQEIRDKIR-G	IM <mark>TLK</mark> MSRNTL	RAIKEVAEETGNPEFA	82
RLA0_METVA	<mark>M</mark> IDAKSEHK <mark>IAP</mark> W	CIEEVNALKELLKS	ANVIALIDMMEVPAV	QLQEIRDKIR-D(OMTLKMSRNTL ()	RAVEE VAEET GNPEFA	82
RLA0_METJA	METKVKAH <mark>VAP</mark> W	KIEE <mark>V</mark> KTLK <mark>GLI</mark> KS	K <mark>PVVAIV</mark> DMMDVPAP	QLQEIRDKIR-DI	KVKL <mark>RMSRNT</mark> L	RALKE AAE E LNNPKLA	81
RLA0_PYRAB	MAHVAEW	KKEVEELANLIKS	SYPVIALVDVSSMPAY	PLSQMRRL IREN	GGLLRV <mark>SRNT</mark> L []	LAIKKAAQELGKPELE	77
RLA0_PYRHO	MAHVAEW	KKEVEELAKLIKS	SYPVIALVDVSSMPAY	PLSQMRRL IREN	GGLLRV <mark>SRNT</mark> L []	LAIKKAAKE L <mark>G</mark> KPE LE	77
RLA0_PYRFU	MAHVAEW	KKEVEELANLIKS	SYPVVALVDVSSMPAY	PLSQMRRL IRENI	NGLLRVSRNTL []	LAIKKVAQELGKPELE	77
RLA0_PYRKO	MAHVAEW	KKEVEELANIIKS	YPVIALVDVAGVPAY	PLSKMRDKLR-GI	KALL <mark>RVSRNT</mark> L (1	LAIKRAAQELGQPELE	76
RLA0_HALMA	<mark>MSA</mark> ESERKTET IPEW	KQEEVDAIVEMIES	YESVGVVNIAGIPS R	QLQDMRRDLHGT ·	- AEL <mark>RVSRNT</mark> LLI	RALDDVDDGLE	79
RLA0_HALVO	MSESEVRQTEVIPQW	KREEVDELVDFIES	YESVGVVGVAGIPS	<mark>QLQSMR</mark> RELHGS	- AAV RMSRNTLY	RALDEVNDGFE	79
RLA0_HALSA	<mark>MSA</mark> EEQRTTEEVPEW	RQEVAELVDLLET	YDS V G V V N V T G I P S K	QLQDMRRGLHGQ	- AAL RMSRNTLL	RALEE AGDGLD	79
RLA0_THEAC	MKE <mark>V</mark> SQQ	KELVNE IT OR IKA	ASRSVAIVD <mark>T</mark> AGIRTR	QIQDIRGKNRGK-	- INLKVIKKTLLI	KALENLGDEKLS	72
RLA0_THEVO	MRK IN PK	KE IVSELAQD ITH	(SKAVAIVDIK <mark>G</mark> VR <mark>T</mark> R	2MQDIRAKNRDK	- VKIKVVKKTLLI	KALDSINDEKLT	72
RLA0_PICTO	MTEPAQW	LUF <mark>V</mark> KNLENE INS	RKVAAIVSIK <mark>G</mark> LRNN	EFQKIRNSIRDK	- ARIKVSRARL	LAIENTGKNNIV	72
ruler	1		40 5	060.	70	80 90	

Each position in a MSA is a column of AA's representing the evolutionary history of one position. 21

Sequence profiles are calculate from MSAs

The probability of amino acid *T* at position 7 is the sum of the sequence weights *w_i* over all sequences *i* such that the amino acid at position 7 of that sequence is *T*, divided by the sum – over the sequence weights *w_i*.

A sequence profile is a 20xN matrix of AA probabilities

23

PSI-pred-- secondary structure from profiles

• PSI-PRED (Jones et al.) is currently the best server for secondary structure prediction, based on an artificial neural network that connects a <u>profile</u> (**Psi-Blast** output) with known protein secondary structure Predictions are assigned *confidences*. A window of 15 is used to predict the central residue. Accuracy claimed to be 76-78%.

The PSIPRED protein structure prediction server L. J. McGuffin, K. Bryson, D. T. Jones (2000) Bioinformatics 16 (4) p. 404-405

Why does local sequence predict structure?

Early in the process of folding (nsec timescale) **local structures** form in the polypeptide chain which guide the formation of tertiary structure.

What is local structure?

Early in the process of folding (nsec timescale) **local structures** form in the polypeptide chain which guide the formation of tertiary structure.

Local structure formation

- Short pieces of protein sample conformational space randomly, driven by the hydrophobic effect (mostly).
- Glycines provide points of greater flexibility.

Backbone angles and preferred sequence of beta turns

Ρ

G

G

Ρ

G

G/P

ľ

ľľ

IV turns excluded from all the above categories

http://www.ebi.ac.uk

*have cis-peptide bond at i+2

Other local structures: Helix caps

Proline helix C-cap

alpha-alpha corner

glycine helix N-cap

Sequence determines structure!

¹Bystroff C & Baker D. (1998). Prediction of local structure in proteins using a library of sequence-structure motifs. *J Mol Biol* 281, 565-77.

² Yi Q, Bystroff C, Rajagopal P, Klevit RE & Baker D. (1998). Prediction and structural characterization of an 32 independently folding substructure in t he src SH3 domain. J Mol Biol283, 293-300.

Local structure motifs are marked by glycines and hydrophobic patterns

		-			
	Motif	Average b mda (°)	ooundaries dme (Å)	Average rmsd (len)	Pattern of conserved non- polar residues
1	Amphipathic α-helix	56	0.71	0.78 (15)	1-4-8, 1-5-8
2	Non-polar α-helix	54	0.58	0.40 (11)	1-4-8, 1-5-8
3	Schellman cap type 1	81	1.01	1.02 (15)	1-6-9-11
4	Schellman cap type 2	76	0.94	0.94 (15)	1-6-8-9
5	Proline α-helix C cap	92	1.07	0.89 (13)	1-2-5-8
6	Frayed α-helix	75	0.96	0.69 (15)	1-5-9-13
7	Helix N capping box	99	0.95	0.65 (15)	1-6-9-13
8	Amphipathic β-strand	89	0.87	0.87 (6)	1-3, 1-3-5
9	Hydrophobic β-strand	101	0.91	0.91 (7)	1-2-3
10	β-Bulge	100	0.97	0.78 (7)	1-4-6
11	Serine β-hairpin	94	0.76	0.81 (9)	1-8
12	Type-I hairpin	80	0.94	1.23 (13)	1-7-8
13	Diverging type-II turn	87	1.04	1.00 (9)	1-7-9

Bystroff C & Baker D. (1998). Prediction of local structure in proteins using a library of sequence-structure motifs. *J Mol Biol* 281, 565-77.

Conserved sequence patterns inform us of the structure.

Super-Secondary Structure (SSS)

- SSS contains more than one SSE, interacting.
- beta turns and helix caps are usually involved.
- · Canonical SSS have names.

EF hand

alpha-alpha corner

handedness?

www.cryst.bbk.ac.uk

Handedness

Right-handed helix. Put the thumb of the right hand along the axis of rotation.

As you travel up the helix (going in the direction of your right thumb) the line curve in the direction of your fingers.

Yes, that means you are turning left when you walk up a righthanded spiral staircase, and right when you are walking up a left-handed spiral staircase.

Super-secondary structure. β

hairpin

meander

"greek key"

wikipedia.org/wiki/Beta_sheet

Super-secondary structure.

β helix

Super-secondary structure. $\alpha\beta$

 $\beta\alpha\beta$ supersecondary structure units are mostly right-handed

L-handed $\beta \alpha \beta$

1.5%

R-handed βαβ 98.5%

Theories for why $\beta \alpha \beta$ units are right-handed.

Sternberg & Thornton: Twist of beta sheet makes righthanded crossover more of a straight line.

Theories for why $\beta \alpha \beta$ units are right-handed.

FIG. 5. A possible folding pathway which forms righthanded crossover loops from a righthanded α -helix with a β strand at each end of it.

Richardson, PNAS, 1976: Right-handed crossovers are trapped early in folding

handed sense constrained by the chain twist. In (c) a complete

righthanded loop is formed, with the two ends in position to form

parallel β structure.

Theories for why βαβ units are right-handed.Phone Cord Effect: Northern versus Southern route to helix

Cole B & Bystroff C. (2009) Alpha helical crossovers favor right-handed supersecondary structures by a kinetic trapping mechanism. The phone cord effect in protein folding. *Protein Science* 18(8) 1602 - 1608

LH _____ RH

left-handed torque turns left-handed $\beta\alpha\beta$ to right-handed $\beta\alpha\beta$

Cole B & Bystroff C. (2009) Alpha helical crossovers favor right-handed supersecondary structures by a kinetic trapping mechanism. The phone cord effect in protein folding. *Protein Science* 18(8) 1602 - 1608

Phone cord: Demonstrative Brownian Dynamics Simulations

http://www.youtube.com/watch?feature=player_embedded&v=6hQYjtmU6E0

3-helix bundles are also right-handed

PDB				Helix residue ranges				DDD	DP Helix peridue penger						00		PDB						Helix residue rang				
code/chain	R/L	frac R	Contacts	Helix	1	Helix	2	Helix 3		PDB code/chain	R/L	frac B	Contacts	He	liv 1	Helix resi	due range dix 2	es He	liv 3	code/chai	n R/	L frac R	Contacts	He	elix 1	He	elix 2
1a26A	R	1.00	14	703	721	726	739	755 7	78	1j0tA	L	0.06	16	16	31	37	40	49	5 6	1tm9A	R	0.83	6	57	74	92	106
1a9xA	R	1.00	6	420	429	433	445	449 4	56	1jj2O	L	0.00	9	4	14	28	33	37	45	1tx4A	L	0.10	21	192	203	209	214
1a9xA	R	1.00	7	433	445	449	456	460 4	79	1jj2O	L	0.00	5	90	111	116	127	134	141	1tx4A	R	0.86	14	64	75	90	102
1a9xA	R	1.00	8	460	479	486	494	499	506	1jr3A	R	0.78	9	278	297	304	308	310	319	1tx4A	R	1.00	5	165	183	185	188
1a9xA	R	1.00	1	486	494	499	506	510 5	519	1jr3A	R	1.00	11	246	258	261	273	278	297	1tx9A	L	0.00	11	88	97	104	109
laa7A	K D	0.89	28	109	117	121	132	140 54	57	1jswA	L	0.00	6	47	65	70	83	104	121	1tx9A	R	1.00	2	75	85	88	97
1aa/A	K D	1.00	3 1	19	33 47	59 54	47 67	54 78	82	IJSWA 13A	L	0.00	18	201	226	246	257	275	302		L	0.00	3	17	21	26	51
1aa7A 1aa7A	R	1.00	18	90	105	109	117	121	32	1jswA 1jewA	L P	1.00	1	147	182	201	226	246	257	1uo4A 1ubyA	к I	0.00	5	20 53	50 67	73	85
1abyA	L	0.00	3	23	39	41	47	53	64	1j5wA 1k6kA	R	1.00	2	4	20	201	35	38	46	1ubyA 1ubyA	L	0.00	13	167	191	204	214
1adtA	L	0.00	4	180	194	200	203	212	224	1k6kA	R	1.00	8	27	35	38	46	51	64	1ubyA	Ĺ	0.00	6	204	214	216	231
1aepA	L	0.00	9	34	65	69	86	94	21	1k8kE	R	1.00	8	63	83	88	100	123	148	1ubyA	L	0.00	4	283	291	294	303
1aepA	R	1.00	2	69	86	94	121	126	.29	1kjsA	R	0.76	38	16	26	34	38	45	62	1un8A	R	1.00	24	356	371	373	382
1aepA	R	1.00	1	94	121	126	129	131	.54	1kp8A	L	0.00	4	53	59	65	84	89	109	1un8A	R	1.00	5	388	404	413	427
1af7A	R	0.80	5	47	61	66	75	80	88	1kp8A	R	0.82	28	10	29	53	59	65	84	1un8A	R	1.00	16	477	490	495	511
1agrE	R	1.00	2	53	61	63	68	70	82	1l8wA	L	0.00	11	228	240	255	260	277	289	1us7B	L	0.00	8	203	226	234	242
lan/A	L	0.00	5	15	27	54 102	42	44 206	54 041	1lbuA	R	1.00	1	17	25	44	56	67	76	Ius/B	R	1.00	4	156	164	168	1//
1an/A 1ah7A	L I	0.00	10	107	190	195	204	172	85		K I	0.00	6	266	282	200	300	217	320	Tus/B	K D	1.00	5	294	300 14	317 18	321
	R	0.86	29	3	24	30	50	54	69		R	1.00	5	300	309	317	320	323	332	1uugA 1uuiA	R	1.00	2	5	21	25	35
1aorA	L	0.00	1	237	240	243	253	274 2	280	1llpA	L	0.00	1	166	177	203	209	236	242	1v2zA	R	1.00	7	186	203	211	225
1aorA	L	0.00	1	274	200	210	217	207	10		-	1.00	3	70	73	75	80	87	101	1v2zA	R	1.00	9	211	225	229	246
1aorA	L	0.00						L	Ν			0.00	0	- 6	18	24	36	41	54	1v5/H	D	1.00	ן 1	26	45	50	63
1aorA	L	0.00				(0.86					/		_				9	9	18	22	38
1aorA	L	0.14										1.00				61	07,						20	22	38	50	63
1aorA	L	0.20										1.00				UJ	L 70		4				11	68	77	87	93 179
1aorA	R P	1.00							\leq			0.00											8	135	150	84	1/8
1a01A 1b79A	R	1.00										0.00											5 17	43	/8 57	60 60	97
1679A	R	1.00										1.00											10	60	72	77	91
1b79A	R	1.00										1.00						T					2	102	116	123	132
1bf5A	R	1.00		A								1.00				- K Y		ר ו					6	17	23	25	45
1bf5A	R	1.00		AUS.								0.00				J			▲ 9				14	381	402	412	428
1bgfA	L	0.00										0.00											9	412	428	438	450
1bgfA	R	1.00										1.00											5	438	450	458	475
1bmtA	L	0.00										1.00											2	458	475	477	485
	L P	1.00							-			1.00				10-		21					5	263	297	304	321
1bouA 1bvn1	R	0.90										1.00					=4	JI					2	289	301	305	390
1c1kA	L	0.00										1.00					_		7				4	11	44	49	71
1c1kA	R	1.00	•									0.00											1	92	128	138	161
1c75A	R	1.00				_						1.00											5	6	12	16	20
1cktA	L	0.18										1.00						Ω			1		5	23	41	55	70
1crkA	L	0.17										0.79		n	(R								5	16	20	23	41
1cshA	L	0.00	-				-					1.00		Ρ	(IN	<u> </u>		vj			L		1	105	120	132	137
IcshA Losh A	K D	1.00										0.95		_									3	28	36	46	60
1cuk A	I	0.08										0.00											14	242	252	260	281
1d2tA	R	0.96							1			1.00	4	66	76	80	83	86	97	lvfsA	R	0.80	10	260	281	291	309
1d2tA	R	1.00							_ \			1.00	3	120	129	131	145	151	169	1vfsA	R	1.00	3	338	370	380	389
1dbhA	R	1.00										1.00	4	2	19	22	39	43	63	1yfsA	R	1.00	14	380	389	394	403
1dbhA	R	1.00							_			0.00	15	33	55	62	67	70	83	1yfsA	R	1.00	3	394	403	410	423
1dbhA	R	1.00	2	331	363	367	379	381	92	1n81A	L	0.00	13	116	142	146	153	156	169	1ygeA	L	0.00	3	636	640	643	656
1dj8A	L	0.14	7	29	39	52	68	74	82	1n81A	R	1.00	3	62	67	70	83	91	108	1ygeA	L	0.12	8	255	276	286	292
1dj8A	R	1.00	7	18	23	29	39	52	68	1n81A	R	1.00	5	146	153	156	169	176	193	1ygeA	R	1.00	1	410	415	417	422
	R	1.00	2	210	210	204	25	38	52	1n93X	Ĺ	0.00	3	130	149	152	156	159	172	1ygeA	R	1.00	6	474	516	523	530
1dnpA	L P	0.00	3	204	518 224	524 238	232 242	248 ·	55 58	1n93X 1n03V	L I	0.00	2	256	2/6	2/8	281	289	293	1yozA	K	0.77	13	65 20	81	83	95 52
1dnpA	R	1.00	2	324	335	341	355	359	69	11175A	R	1.00	0	53	02 50	63	90 68	71	.82	1zt/A 1zt?R	ь т	0.00	2	52 27	41	4.5	52

How to force hydrogen bonds using restraints

- <u>To add a restraint</u>
 - Edit | Potential | Restrain, distance, Target 1.8, 1.8, Weight 50 Pick amide H and carbonyl O. Click Create. Cancel | Restrain (or esc) when done
- Energy minimize

Compute | prepare | Structure preparation

Checks for missing atoms, assigns energies.

SVL: run 'gizmin.svl'

When finished, be sure to **Cancel | GizMOE_Minimizer**

 <u>To remove or modify restraints</u>
Potential setup (button at far lower left) Restraints tab

Exercise 18.2

Make a beta hairpin

anti-parallel sheet with valine side chains all on the same side of the sheet.

Edit | Build | Protein, Geometry: anti-strand. Residue: ADVDVKVSPNGVEVKVRA

Zoom out.

Select the second half of the chain starting with NG.

Rotate and translate it (**shift-alt-middlemouse**) so that the first three valines (3,5,7) are lined up with other there valines (12,14,16), and the valine backbone H-bonding groups (NH and CO) are close to the H-bonding distance (1.8Å from H to O)

Hide side chains to help see the backbone atoms better.

Edit | Potential | Restrain.

Set Target 1.8, 1.8, Weight 50. Select H and O atoms. **Create**. When done you have 2 restraints for each of the three paired valines for a total of 6 restraints.

Compute | Prepare | Structure preparation. Hit Correct if necessary. Protonate3D.

SVL: run 'gizmin.svl'.

If there are errors in the restraints, **Cancel/GizMOE**, open **Potential Setup** (extreme lower left of the MOE window). **Restraints**. Click on restraints to delete or modify them. Restart **SVL: run 'gizmin.svl'.**

Look at out the structure.

It should have beta pleating when viewed from the edge of the sheet. Sidechains should alternate up and down in that view. Residues SPNG form a beta-turn.

Cancel/Gizmin . Remove the restraints. Restart SVL: run 'gizmin.svl'.

Does the structure hold together or fall apart?