# Molecular Modeling 2020 -lecture 18 ... Tues Mar 31 Model building with restraints

Building a small molecule

Energy

Energy minimization

#### What is energy?

- Energy (G) is a measure of the probability of the state of the system. Energy is the negative log of the probability ratio, times temperature.
- ΔG = -RT In ( A / not A )
   or -RT In( P / (1-P) ), where P = probability.
- The system = the atoms.
- State = where the atoms are.

  (This is a vague definition so we can be flexible about what the energy means.)
- Energy is always relative (see fig).
- Energy is measured between **two** states.
- Energy is expressed in J/mole, or kJ/mole.
- Energy breaks down into **enthalpy** (H) and **entropy** (S).  $\Delta G = \Delta H T\Delta S$ .
- Energy also breaks down to potential energy and kinetic energy.



# The reference state is not a physically possible state for a protein.

- Reference state is the state at which energy is zero.
- For bonds, bond angle, dihedral angle, improper angle and planarity, the reference state is the ideal distance, angle, or planarity.
- For non-bonded interactions, the reference state is infinite distance.
- No protein can be drawn with ideal bond angles and infinite distance!
  - ∴ the reference state for protein is not a *real* state.

# What good is the number if the reference state is not physical?

- Energy calculations should not be used "at face value". In other words, a negative number does not mean your molecule is stable. A positive number does not mean it is unstable.
- Instead, energy calculations should be used in a <u>relative sense</u>.



» If state 1 has energy E1 relative to the reference state, and state 2 has energy E2 relative to the reference state. Then the difference between state 1 and state 2 is independent of ht ereference state. ΔG = E2 - E1.

## Electrostatics are truncated

but should it be?

 Pairwise calculations go up with the square of the number of atoms



- After all, the Coulomb term goes to zero....
- Or does it?

 Electrostatic force goes down with the square of the distance, but 3D space goes up with the square of the distance.





- Molecular mechanics
  - bond length
  - bond angle
  - dihedral angle
  - improper angle (chirality)
  - planarity



- Molecular mechanics
  - bond length
  - bond angle
  - dihedral angle
  - improper angle (chirality)
  - planarity



- Molecular mechanics
  - bond length
  - bond angle
  - dihedral angle
  - improper angle (chirality)







- Molecular mechanics
  - bond length
  - bond angle
  - dihedral angle
  - improper angle (chirality)
  - planarity



isoleucine beta carbon is chiral

- Molecular mechanics
  - bond length
  - bond angle
  - dihedral angle
  - improper angle (chirality)
  - planarity



- Molecular mechanics
- Non-bonded interactions
  - electrostatics
  - van der Waals

$$F=k_erac{q_1q_2}{r^2}$$

- Molecular mechanics
- Non-bonded interactions
  - electrostatics
  - van der Waals

$$V_{
m LJ} = 4arepsilon \left[ \left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^{6}
ight]$$



#### Review of force fields: solvation

- Explicit solvation
  - water models
    - TIP3P
    - TIP4P
- Implicit solvation



#### Review of force fields: solvation

- Explicit solvation
- Implicit solvation
  - Distance dependent dielectric
  - Poisson-Boltzmann
  - Generalized Born
  - Accessible surface area



# Three energetic terms that are <u>not properly calculated</u> in protein force fields.

- Electrostatics
- H-bonds
- The hydrophobic effect

#### Electrostatics are truncated

Calculated Atom pair force

$$F=k_erac{q_1q_2}{r^2}$$



Cutoff to zero force at  $r_{ij}$ = $8\mathring{A}$ 

Volume



Number of atoms goes up quadratically with distance.

Calculated Total  $\Sigma$  |F|

$$\phi_i = rac{1}{4\piarepsilon_0} \sum_{j=1(j
eq i)}^N rac{Q_j}{r_{ij}}.$$



Although F is close to zero at > 8Å, total sum of forces at 8Å may be significantly non-zero.

## Electrostatics are truncated

$$\phi_i = rac{1}{4\piarepsilon_0} \sum_{j=1(j
eq i)}^N rac{Q_j}{r_{ij}}.$$

- Energy is the integral of the forces.
- The cumulative effect of many distant charges is not negligible.
- Case in point, highly charged proteins use electrostatics to attract ions from a distance (e.g. the enzyme superoxide dismutase).
- Other case in point. Highly charged proteins repel each other at long distances, increasing solubility.
   Decreasing aggregation.

+





#### H-bond strength depends on environment

- H-bond donors have a polar H (usually N, or O)
- H-bond acceptors have lone-pairs (usually O, or N)
- Together they form a hydrogen bond.
- Part electrostatic, part covalent.



 Because charge-charge interactions are stronger when **buried**, buried h-bonds are **stronger** than solvated H-bonds.



## Energy of unsatisfied H-bonds not calculated

H-bond donors and acceptors do not want to be left

unsatisfied.

 Force fields don't penalize unsatisfied H-bond donors/acceptors, unless a long MD simulation is carried out.

 If MD is not considered, then buried and exposed unpaired donors and acceptors are assigned the same energy, which is wrong!



### Energy of unpaired or paired buried charges not properly calculated

• The energy ( $\Delta$ H) of paired positive and negative buried charges (a "salt bridge") is overestimated by forcefields. (It is really more negative)  $F = k_e \frac{q_1 q_2}{r^2}$ 

The energy ( $\Delta$ H) of <u>un</u>paired positive or negative buried charges (see fig) is underestimated by forcefields. (It is really <u>positive</u>, not zero)



### The Hydrophobic Effect: As hydration spheres coalesce, volume decreases, free energy decreases

Solvent accessible positions (dashed line) around non-polar atoms contain "high energy waters" because those waters lose some H-bonds.



When non-polar atoms come together it decreases the number of high energy waters. (Even at the cost of creating some void space (brown).



Solvent-excluded surface (SES) is a good estimator of hydration layer volume.

### The Hydrophobic Effect: an emergent property of water.

- The hydrophobic effect is expressed if waters are modeled and a long simulation is done, because water is naturally attracted to water.
- Thus, the hydrophobic effect is an *emergent* property of a long simulation.
- It is **not** a **bug** that the hydrophobic effect is not in the force field explicitly.
- Don't expect energy minimization alone to bury hydrophobic surfaces. It won't. You have to do it manually.

### Other imperfections in molecular force fields

- <u>Partial charges</u> are calculated, but are not allowed to change dynamically. They do change! But not much.
- <u>Dihedral angles</u> are poorly modeled by a cosine function. The true barrier to rotation depends on "1-4" interactions. This usually does not matter.
- Overpacking a protein core (*i.e.* when designing a protein) makes a protein unstable, but the calculated  $E_{VDW}$  (or  $E_{LJ}$ ) energy is better! Why? Because dynamic movement is ignored. More movement means more entropy.

#### What do we do about it?

(relevant when we start designing)

- We remain vigilant!
- If you find a buried, unsatisfied H-bond, satisfy it or understand that it is high-energy.
  - either move atoms or add a water.
- Minimize empty space between side chains in the core but don't overpack.
- Be aware that long-range electrostatics are not calculated. Visualize electrostatic surfaces to predict long-range behavior.

# Restraints: energy minimization helpers.

#### constraints versus restraints

**restraint** = a function that approaches a minimum as the parameters approach ideal values.

For example, the bonded distance A-B is restrained to 1.52Å using the restraint  $E(A,B) = (D_{AB} - 1.52)^2$ 

--- versus ----

Distance D<sub>AB</sub> from atom A and atom B

**constraint** = a function that reduces the number of variable parameters in the system.

For example, atoms A,B,C and D are constrained to be in the same plane. Move atoms, then solve for the constrained atom position.

Stereochemistry energy functions are restraints.

#### Harmonic and non-harmonic restraints

Restraint forces are applied to move the atoms to their **ideal** distances/angles/positions/geometry.



Harmonic potential:

$$E(i,j) = \omega (x_{ij} - T)^2$$

where  $x_{ij}$  is the current distance between i and j, and T is the ideal distance between i and j.

#### How to force hydrogen bonds using restraints

To add a restraint

Edit | Potential | Restrain, distance,

Target 1.8, 1.8, Weight 50

Pick amide H and carbonyl O.

Click Create.

Cancel | Restrain (or esc) when done

Energy minimize

#### Compute | prepare | Structure preparation

Checks for missing atoms, assigns energies.

SVL: run 'gizmin.svl'

When finished, be sure to **Cancel | GizMOE\_Minimizer** 

To remove or modify restraints

**Potential setup** (button at far lower left)

Restraints tab





### **EPUSIEPF**

- •Select the region you want energy minimize
- •Edit | Potential | Unfix
- •Select | Invert
- •Edit | Potential | Fix.
- •Minimize.



#### review questions

- What does sp2 hybridization mean?
- How is energy related to probability?
- What constitutes a "system"?
- Give an example of a state of a system.
- What changes when we minimize the energy? (besides the energy)
- Energy can be broken down into what two components?
- Name the molecular mechanics energy functions.
- What is a restraint, mathematically?
- The hydrophobic effect is an emergent property of what two properties of water?
- In what way are H-bonds not properly modeled?
- In what way are electrostatics not properly modeled?
- Is the high energy of a buried unsatisfied H-bond donors an emergent property?