Molecular Modeling 2020 --Lecture 21. Fri Apr 10 rotamers and waters

Rotamers Manual protein design Packing Adding waters

Rotamers

Sidechain conformations fall into three classes called rotational isomers, or **rotamers**.

A random sampling of Phenylalanine sidechains, w/ backbone superimposed

Sidechain rotamers

1-4 interactions differ greatly in energy depending on the moieties involved.

General generic rotamer preference order for χ_1

$\mathbf{m} < \mathbf{t} < \mathbf{p}$

...but, actual rotamer preference depends on

- 1) the amino acid
- 2) the backbone conformation
- 3) packing.

Rotamer tree

 χ_1 backbone determines the preference for χ_2 which determines the preference for χ_3 , an energetic decision tree of rotamers χ_2 χ_3

 χ_1 -90° -65° +90° -90° 160° +90° -60° "m" NH₂ 58° -90° +90° -90° 80° +90° 180° "t" -175° -90° +90° -40° -90° +90° +60° "p" -90° 66° +90° -171° -90° +90° Gln -67° -90° +90°

Erot

- The energy of a rotamer can be calculated two ways.
 - Using a force field. (not very accurate)
 - using statistics from the protein data bank.
 (empirical and accurate)

$$E_{rot} = -RT \log \left(\frac{P(r)}{1 - P(r)} \right)$$

where P(r) is the probablity of rotamer r.

Jane Richardson

Rotamer Libraries

Rotamer libraries have been compiled by clustering the sidechains of each amino acid over the whole database. Each cluster is a representative conformation (or rotamer), and is represented in the library by the best sidechain angles (chi angles), the "centroid" angles, for that cluster.

Two commonly used rotamer libraries:

Jane & David Richardson: http://kinemage.biochem.duke.edu/databases/rotamer.php

Roland Dunbrack: http://dunbrack.fccc.edu/bbdep/index.php

Richardson rotamer library

G 3 0 -0.000000 0.0000 0.0000 1.4700 0.0000 2.0200 -0.7140	G 0.0000 0.0000 -1.2400	– N CA HB	p:0000	900.	900.	900.	900.	0.000
A 3 0 -0.000000 0.0000 0.0000 1.4700 0.0000 AA 1-letter code)0 -0.7140	A 0.0000 0.0000 -1.2400	– N CA CB	p:0000	900.	900.	900.	900.	13.255
	log_likoliho		rotamer name	, dihedral	angle(s).	900 mear	ıs "n/a"	
$\frac{c}{0.377250}$ Lrot =	C		p:1000	52.	900.	900.	900.	33.851
$\begin{array}{c} 0.0000 & 0.0000 \\ 1.4700 & 0.0000 \\ 2.0200 & -0.7140 \\ 1.2558 & -0.0213 \\ 1.6794 & -0.5784 \\ 0.377250 \\ 0.0000 & 0.0000 \\ 1.4700 & 0.0000 \\ 2.0200 & -0.7140 \\ 1.4900 & 0.1650 \\ 1.9194 & -0.3874 \\ 0.377250 \end{array}$	0.0000 0.0000 -1.2400 -2.7466 -3.7820 C 0.0000 0.0000 -1.2400 -2.7500 -3.7854 C	N CA CB SG HG - N CA CB SG HG	p: 3000	ates 62.	900.	900.	900.	34.855
$\begin{array}{c} 0.377230\\ 0.0000 & 0.0000\\ 1.4700 & 0.0000\\ 2.0200 & -0.7140\\ 1.7470 & 0.3158\\ 2.1829 & -0.2329\\ 0.232074 \end{array}$	0.0000 0.0000 -1.2400 -2.7228 -3.7575	N CA CB SG HG	+.1000	173	900	900	900	33 /57
0.232074 0.0000 0.0000	0.0000	N N	C:1000	т/Ј.	900•	900.	900.	22.42/
Stats compiled from a set of 240 high resolution PDB structures.								

Lovell, S. C., Word, J. M., Richardson, J. S., & Richardson, D. C. (2000). The penultimate rotamer library. *Proteins: Structure, Function, and Bioinformatics*, *40*(3), 389-408.

10

Rotamer stability depends on $\phi\psi$

Rotamers of W*: $\chi 1 \chi 2$		1 χ2	ΡΙφ=-140,ψ=160	ΡΙφ=-60,ψ=-40		
p-90	+60	-90	0.372	0.079		
p90	+60	+90	0.238	0.005		
t-105	180	-105	0.033	0.251		
t90	180	90	0.021	0.268		
m0	-65	5	0.038	0.124		
m95	-65	95	0.183	0.203		

Roland Dunbrack's is a *backbone-dependent* rotamer library

Backbone dependent rotamer tree

 $\phi\psi$ determines preference for χ_1 , determines the preference for χ_2 , determines the preference for χ_3 ,

Exercise 21.2: Protein design using Protein | Protein builder

- Open "messedup.moe"
- Using Protein | Protein builder, find a better rotamer.
- Select several sidechains that are in mutual contact. Click **REPACK.** wait. What happened?
- <u>Protein design</u>: Select a buried sidechain that is too small, In *targets* add large sidechains Trp, Phe. Hit **Rotamers**. Inspect. Select a Trp rotamer. Keep.
- Select sidechains near the new Trp side chain. Click **REPACK**. Is the new Trp "happy" where you put it? (Happy means no clashes, no buried H-bond donor/acceptors, no holes, good *shape complimentarity*.)
- <u>Design</u> more residues this way.

The Protein Core: Nature abhors a vacuum

Alice sensed that sinister eyes were watching her every step. Worst of all, she knew that Nature abhorred a vacuum.

Shape Complementary

Complementary surfaces leave relatively little unfilled (void) space. Protein cores are well-packed with little empty space.

close packing

is not the way of proteins.¹⁶

Empty space inside a protein is wide enough for wiggle room, but not wide enough to drive a water molecule through.

About 1/2 an atom wide.

If you add that to the radius of two carbon atoms, you get a typical carbon-carbon nonbonded distance = 1.5 + 1.5 + 0.75 = 3.75Å

8Å slab stereo!

waters fills polar pockets and cavities

Adding waters one at a time

- Locate an unsatisfied hydrogen bond donor or acceptor with enough space to fit a water, and which is in a buried cavity or pocket.
- Edit | Build | Molecule (or Builder)
- Clear selections.
- Click **O** (oxygen). OK.
- Select the new water molecule. **EPUSIEPF**. **Minimize**.

Exercise 21.3 Adding *freeze dried* waters

Part 1 -- Get started

Make sure Select | Synchronize is checked.

1. Open 1rx5 from PDB within MOE.

2. Potential Setup lower corner menu | Load | Amber14EHT

- 1. Select maximum threads.
- 2. Fix hydrogens.
- 3. Fix charges.
- 4. OK.

You are ready to add waters.

Part 2 -- Hydrate your protein

3. Compute | Simulations | Dynamics

- 1. Solvent Setup :
- 2. Layer, Water, NaCl 0M, 4.0, Delete far, OK.
- 3. Cell Setup: No periodicity (don't change it)
- 4. Constrain: light bonds
- 5. Rigid water
- 6. Time step 0.002 ps
- 7. NPA algorithm
- 8. OK
- 4. in SEQ window: select all waters and ions.
- 5. In MOE window: EPUSIEPF*
- 6. Minimize.

Now your protein is hydrated. Go to Part 3.

Freeze dried protein nydrate: remove waters that are exposed to bulk solvent or move too much

Part 3 -- Freeze dry

- 1. In SEQ window, select water and ions chains.
- 2. Select | Selector, Click UI (user interface)
 - 1. Check Selected Chains
 - 2. Operation: or
 - 3. Connectivity | Accessibility
 - 4. Probe radius 5.0. <---- critereon for bulk water exposure
 - 5. Exposed. (Some waters and ions are selected)
 - 6. Molecule. (Now complete water molecules are selected.)
 - 7. Note the number of atoms selected. Number of waters is that number divided by 3.
 - 8. In MOE window, Delete selected.
 - 9. Repeat 5-8, until...
- 3. No more exposed waters? Is the number of waters left less than 20? Stop. Go to Part 4.
- 4. Minimize.

Now your protein is freeze-dried.

Part 4 -- Molecular dynamics

- 5. Select | Solvent
- 6. EPUSIEPF
- 7. Compute | Simulations | Dynamics
 - 1. Change name to water.mdb
 - 2. Uncheck "rigid water"
 - 3. Protocol: prod {ps=250 T=500} (You may explore a higher or lower temperature if you do this a second time.)
 - 4. OK. If the simulation does not finish in time, **Cancel | Dynamics** when told.

Part 5 -- Find stable waters

- 8. Open water.c.250.mdb (opens in database viewer, DBV)
- 9. DBV: File | Browse
- 10. Hit the play button. Use the slider to set the speed of playback.
- 11. In MOE window. remove protein atoms, display ribbon, and make waters **spacefill**. Waters sitting in deep energy wells move very little. Waters in shallow energy wells move alot and escape to other energy wells.
- 12. Select the five least mobile waters and color them light blue.
- 13. Stop the animation. Go to the last frame and hit keep. (sends frame to MOE window) Close.
- 14. Display protein as ribbon only. Save the MOE file. Upload it to the homework server as Exercise 21.