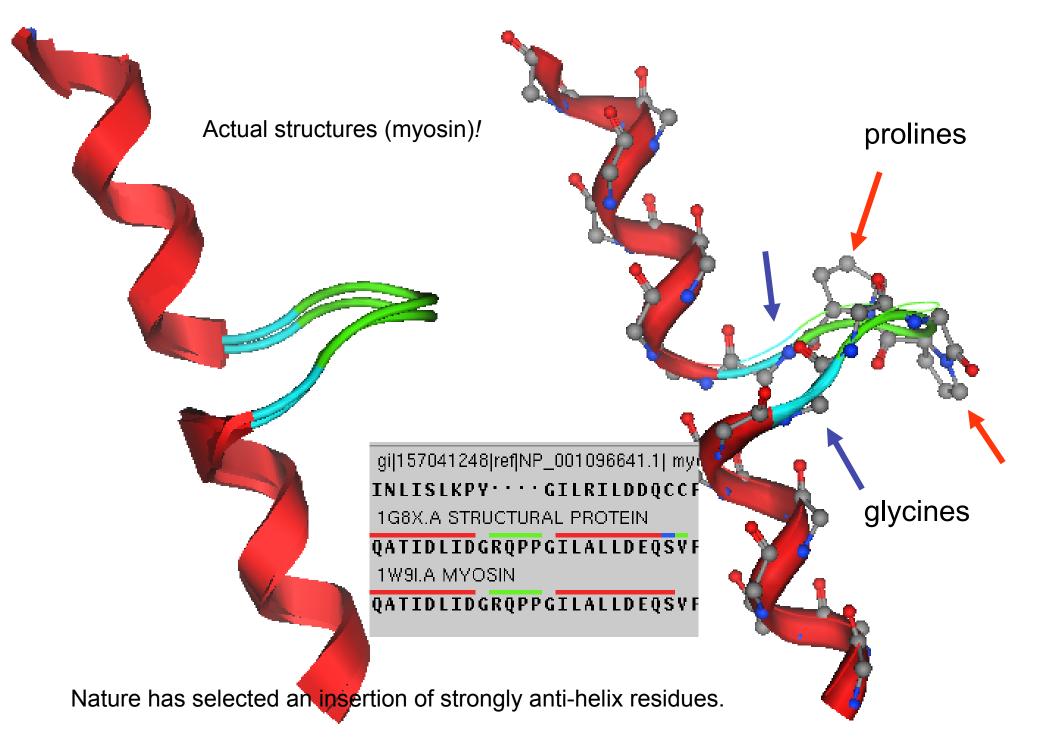
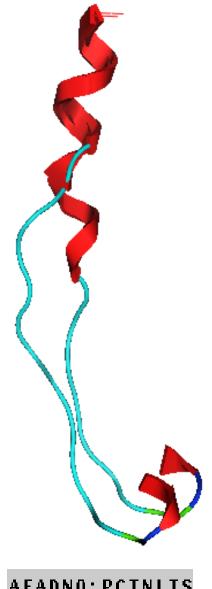
Molecular Modeling 2018 -- Lecture 8


Local structure

Database search

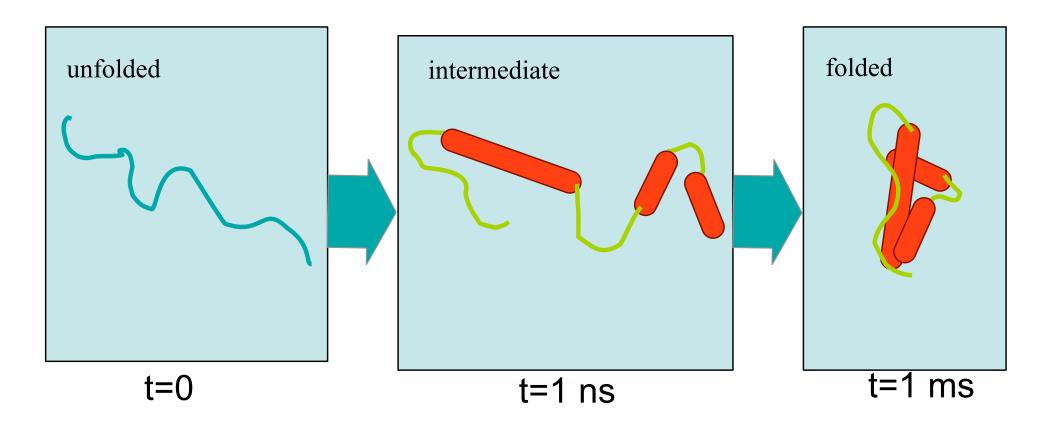

Multiple alignment

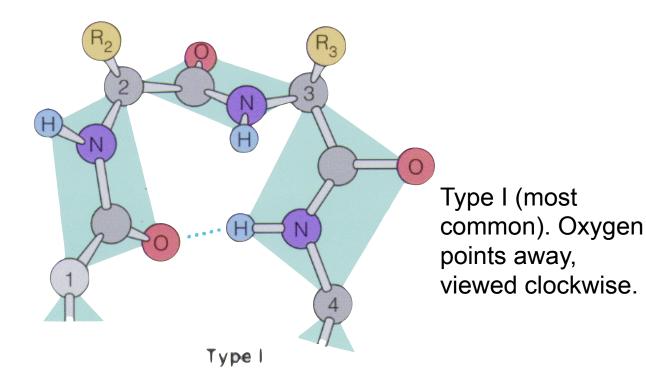
Automated homology modeling

An exception to the *no-insertions-in-helix* rule

Not an exception to the *no-deletions-in-helix* rule

Deletion in the sequence leads to <u>shorter helix</u>, not a helix with a "deletion" in it.

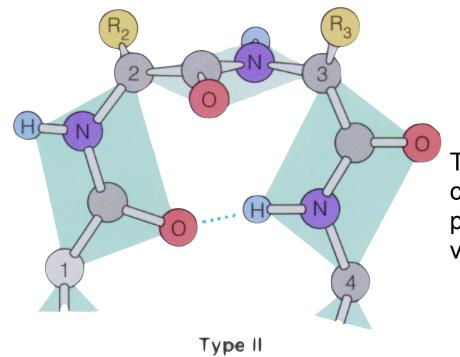

This shows two actual structures. The one with the deletion is more extended, to span the distance.


Alignment

AFADNQ PCINLIS TFIDFGLDSQATID

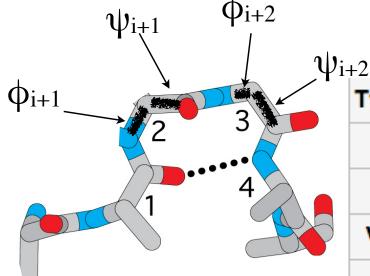
What is local structure?

Early in the process of folding (nsec timescale) local structures form in the polypeptide chain which guide the formation of tertiary structure.



beta turns

4-residues


Residue 1 hydrogen bonds to residue 4

Type II (less common). Oxygen points toward, viewed clockwise.

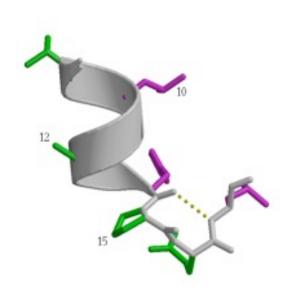
5

Backbone angles and preferred sequence of beta turns

Glycine rules turn propensity

position type \	1	2	3	4
I		Ρ	D/N/S/ T	G
II	Р	Р	G	
VIII	G/P	Р		Р
l'		G	G	
II'		G		

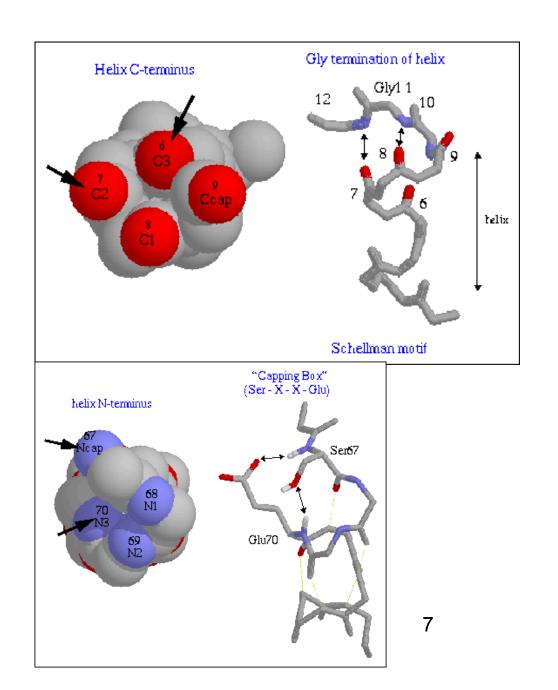
Backbone angles ±30°


Type	ϕ_{i+1}	ψ_{i+1}	ϕ_{i+2}	ψ_{i+2}		
I	-60	-30	-90	0		
II	-60	120	80	0		
VIII	-60	-30	-120	120		
ľ	60	30	90	0		
ll'	60	-120	-80	0		
Vla1	-60	120	-90	0*		
Vla2	-120	120	-60	0*		
VIb	-135	135	-75	160*		
IV	turns excluded from all the above categories					

http://www.ebi.ac.uk

*have cis-peptide bond at i+2

http://www.cryst.bbk.ac.uk


Other local structures: Helix caps

Proline helix C-cap

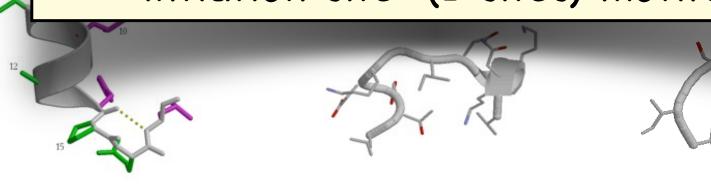
glycine helix N-cap

Datamining for local structure motifs

Backbone angles:

y=green, φ=red 60

120


Structures from non-homologous

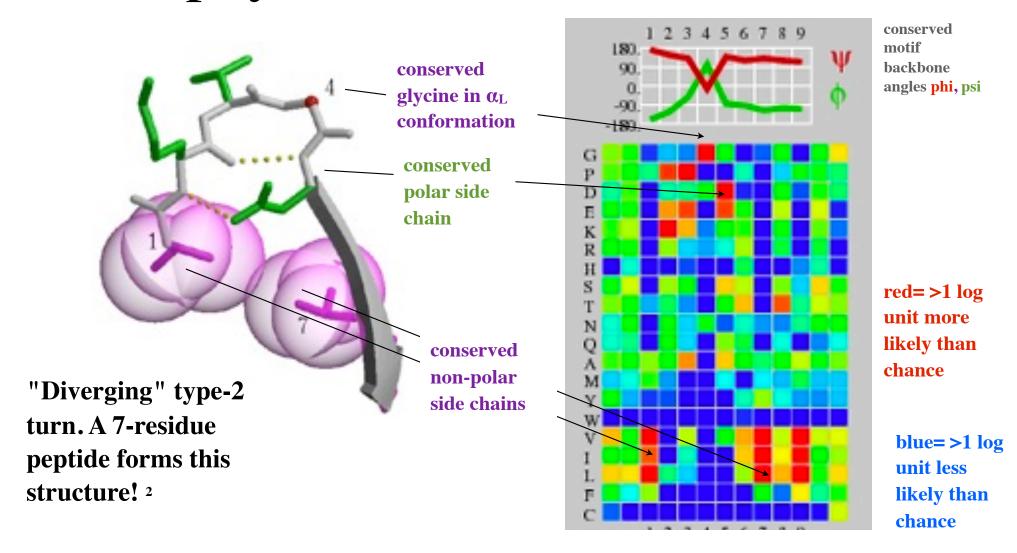
turn proteins (not same family) were data-

Type-I hairpin

Structures from non-homologous proteins (not same family) were datamined for correlated sequence/ structure patterns. Strongest correlations were called "folding intiation site" (I-sites) motifs.

Frayed helix

Proline helix C-cap


Sering

hairpi

alpha-alpha corner

glycine helix N-cap

Biophysics of an I-sites motif

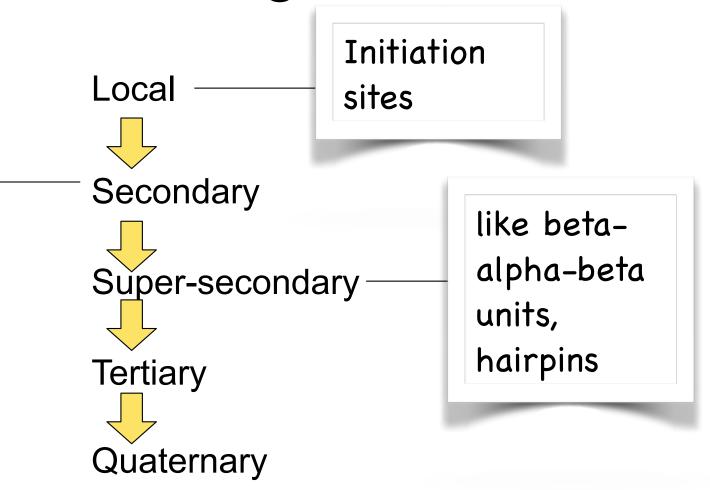
¹Bystroff C & Baker D. (1998). Prediction of local structure in proteins using a library of sequence-structure motifs. *J Mol Biol* 281, 565-77.

² Yi Q, Bystroff C, Rajagopal P, Klevit RE & Baker D. (1998). Prediction and structural characterization of ⁹ an independently folding substructure in t he src SH3 domain. J Mol Biol283, 293-300.

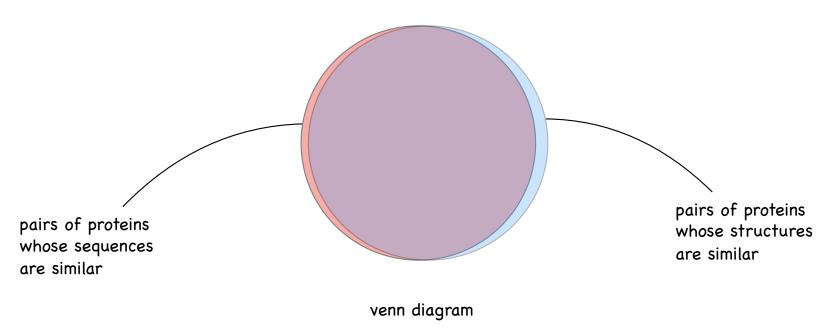
Local structure motifs are marked by glycines and hydrophobic patterns

		-			
	Motif	Average b	ooundaries dme (Å)	Average rmsd (len)	Pattern of conserved non-polar residues
1	Amphipathic α-helix	56	0.71	0.78 (15)	1-4-8, 1-5-8
2	Non-polar α-helix	54	0.58	0.40(11)	1-4-8, 1-5-8
3	Schellman cap type 1	81	1.01	1.02 (15)	1-6-9-11
4	Schellman cap type 2	76	0.94	0.94 (15)	1-6-8-9
5	Proline α-helix Ć cap	92	1.07	0.89 (13)	1-2-5-8
6	Frayed α-helix	75	0.96	0.69 (15)	1-5-9-13
7	Helix N capping box	99	0.95	0.65 (15)	1-6-9-13
8	Amphipathic β-strand	89	0.87	0.87 (6)	1-3, 1-3-5
9	Hydrophobic β-strand	101	0.91	0.91 (7)	1-2-3
10	β-Bulge	100	0.97	0.78 (7)	1-4-6
11	Serine β-hairpin	94	0.76	0.81 (9)	1-8
12	Type-I hairpin	80	0.94	1.23 (13)	1-7-8
13	Diverging type-II turn	87	1.04	1.00 (9)	1-7-9

Bystroff C & Baker D. (1998). Prediction of local structure in proteins using a library of sequence-structure motifs. *J Mol Biol* 281, 565-77.


Local structure formation

- Short pieces of protein sample conformational space randomly, driven by the hydrophobic effect (mostly).
- Glycines provide points of greater flexibility.


W SS D JS

Folding

Secondary
Structure
Elements
(SSE):
alpha helix
or beta
strand

If the sequence is similar, then the structure is similar.

Searching for a homolog of known structure.

Download "Sequence 1" from http://www.bioinfo.rpi.edu/bystrc/courses/biol4550/biol4550.html. Name it "strepto.fasta"

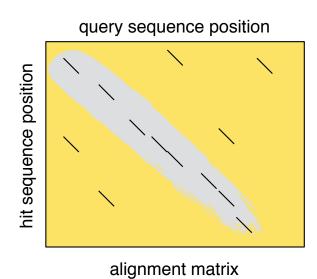
Open it in MOE

SEQ: Protein > Search > PDB

In the database search window, **Load chain** (select strepto)

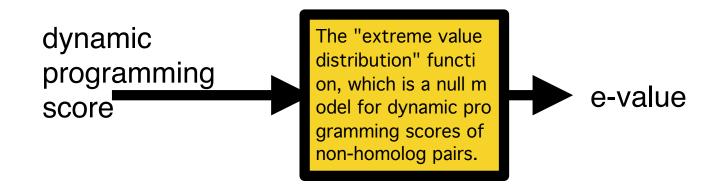
Search

Choose the hit with the best e-value


Inspect the alignment

Load the alignment. Close the search window,

In **SEQ** window, color residues by similarity (bottom bar **Residues > Similarity**)

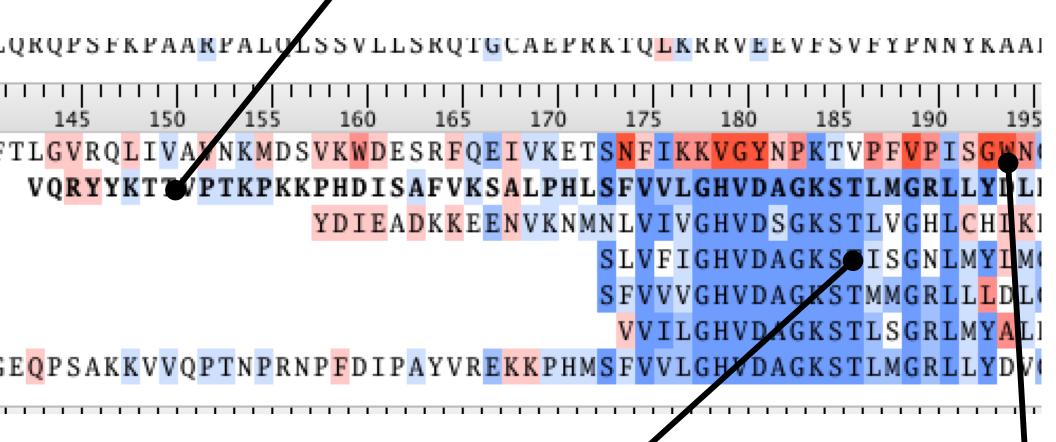

Sequence Database search

- Your sequence (query) is chopped up into 3-tuples.
- Every 3-tuple (there are exactly 8000) has its own look-up table,
 or index, of database locations (pdbcode, chain ID, position)
- Hits are chains with the most 3-tuples arranged along a diagonal on the alignment matrix, query vs hit.
- Hits are aligned to query using the dynamic programming algorithm (Smith-Waterman)
- The Dynamic Programming score is converted to a statistic, called the e-value.

e-value

 The number of times in a database search that you will get a random, non-homologous hit with the same score or better.

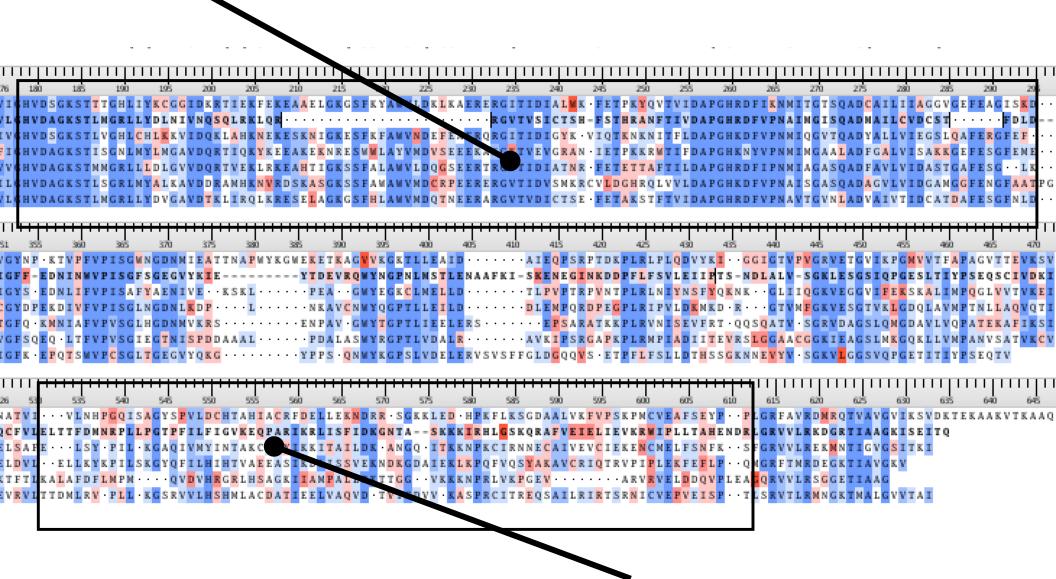
How do I know it's a good alignment?


- In NCBI Blast: Look for a low <u>e-value</u> (<< 1).
 Lower is better.
- Long strings of contiguous matches is good.
 Lots of <u>indels</u>, bad.
- Are large portions of the target sequence missing?
- Are the indels "one-sided"? (all deletions in one sequence, all insertions in the other)

How do I know it's a good alignment?

- Look at a multiple sequence alignment. In a good MSA, indel positions tend to be conserved.
- Look at positions around the indel. How conserved are they?
- Check the <u>coverage</u>. Is every part of hte target aligned to a template?

After loading alignment.


bold sequence, has coordinates

not bold, does not have coordinates.

Residues>Similarity colors well-aligned regions blue, poorly aligned red.

Well aligned region. Bluish in *Similarity* coloring. Not so many indels.

Poorly aligned region. Reddish in *Similarity* coloring. Gaps all over the place.

Manual modeling

```
    identity == no changes. do nothing.
    == mutate sidechain using Edit/Mutate
    deletions == remove residues, make new peptide bond using Builder, energy minimize.
    insertions == make a peptide using Edit/build/protein, position the loop. Make two new peptide bonds, energy minimize.
```

... in that order, because we always model high confidence first.

Manual homology modeling

- When you are finished with Homework 3 you should have mastered...
- Edit/Mutate
- Compute / Prepare / Structure preparation
- Edit / Potential / Fix
- Selection / Invert
- Edit / Potential / Unfix
- Window / Atom Manager (set hybridization)
- SVL: run 'gizmin.svl'
- Edit / Build / Protein
- SEQ:Edit / Move Chains
- SEQ:Edit / Split chains
- SEQ: Edit / Join chains
- (shift/alt)-middle-mouse drag on atom selection.

Manual homology modeling

Work on Homework 3

http://www.bioinfo.rpi.edu/bystrc/courses/biol4550/HW3.pdf

Homework 3 -- Homology modeling by hand.
due Fri Feb 10

Step 1 -- Find template

Open course web page (http://www.bioinfo.rpi.edu/bystrc/courses/biol4550)and download "Sequence 1" as file *strepto.seq*.

Open MOE, go to Sequence Editor (ctrl-q), hereafter called "SEQ"

SEQ: File | Open strepto.seq
Be sure to Open as: "fasta"

SEQ:Annotate | 20 structure | Predict

SEQ: Protein | Search | PDB. Load chain 1. Settings: set E-value cutoff to 0.001, Tuple size to 3. Load the alignment labeled 2IGD. Select 1EM7.A and Load Selected

Align the sequences: SEQ: Alignment/Align..

Sequence alignment only.