BIOL/BCBP 4550/6420, Molecular Modeling. SPRING 2021

This course covers the theory and practice of molecular modeling, including homology-based modeling of proteins, energy minimization, molecular dynamics, structure-based alignment, protein design, and docking.

Place: remote Time: 8-9:50 T,F Office hours: F 10-12.

Instructors :Chris BystroffChunyu Wangoffice:J-Rowl 3c07BioTech 4219phone:518-276-3185518-276-3497

email: bystrc@rpi.edu wangc5@rpi.edu

Web sites: RPI LMS.

REQUIRED TEXT: None. *Required readings will be posted on the website.*

SOFTWARE: MOE (Available on institute-maintained computers in the classroom and VCC.)

GRADING: Homework 35%[‡] Midterm exam 25%[‡]

Term project 15%[∞] Final exam 25% · Attendance*

• Both midterm and final may have written and a practical (computer) parts. Exams are closed-book. A cheat-sheet is allowed (midterm: 1p., final: 2pp). Missed exams can be made up only if the absence is excused (see below). Exam grades may be contested in person or in writing up to one week after receiving the graded exam.

*You are allowed one unexcused absence. After that, every unexcused absence will result in a grade deduction of 3 percentage points, up to a maximum of 9 percentage points. RPI attendance policy requires excuses be validated through the Student Experience Office (4th fl Academy Hall x8022, se@rpi.edu).

‡Please turn in homework on paper at the beginning of class on the day due unless otherwise specified (note: many homeworks will be turned in electronically). Late homework will be accepted with a 10% penalty for each weekday late for up to 5 weekdays late. Thereafter, late homework is accepted until the last day of classes with a 50% penalty. Homework grades can be contested in person or in writing up to one week after receiving the graded homework, but only if the homework was turned in on time.

∞Term projects are usually done in teams of two. Outside reading is required. Term projects consist of slides and an oral presentation. **Students enrolled in BIOL 6420** will do term projects on their own instead of in teams, and must deliver a written report on their work

ACADEMIC DISHONESTY: The Rensselaer Handbook of Student Rights and Responsibilities and The Rensselaer Graduate Student Supplement define various forms of Academic Dishonesty and procedures for responding to them. All forms are violations of the trust between students and teachers. Student-teacher relationships are built on trust. For example, students must trust that teachers have made appropriate decisions about the structure and content of the courses they teach, and teachers must trust that the assignments that students turn in are their own performance. Acts that violate this trust undermine the educational process.

The Rensselaer Handbook of Student Rights and Responsibilities and The Rensselaer Graduate Student Supplement define various forms of Academic Dishonesty and you should make yourself familiar with these. In this class, all assignments that are turned in for a grade must represent the student's own work. In cases where help was received, or teamwork was allowed, a notation on the assignment should indicate your collaboration. Submission of any assignment that is in violation of this policy will result in a penalty. If found in violation of the academic honesty policy, students may be subject to two types of penalty. The instructor administers an academic [grade] penalty and the student is reported to the Dean of Students or the Dean of Graduate Education as appropriate. The first violation results in 0 grade for that assignment. The second violation results in failure of the course. If you have any questions concerning this policy before submitting an assignment, please ask for clarification.

Learning objectives for BIOL/BCBP 4550

- 1. Students will be able to critically assess the quality of a protein structure model.
- 2. Students will demonstrate a thorough understanding of energy calculations for molecular modeling, analysis, and simulation.
- 3. Students will be able to communicate in the language of bioinformatics on the subject of protein structure and classification.
- 4. Students will be able to navigate the protein data bank and understand relevant protein data structures.

Additional Learning objective for BIOL/BCBP 6420

5. Students will be able to understand and synthesize information from the molecular modeling literature.

#	Date	Topic*	
1	Tue, Jan. 26	Intro to proteins, structure, modeling and MOE: MOE tour tutorial	cw
2	Fri, Jan. 29	Where do protein structures come from?	cb
3	Tue, Feb. 2	Protein classification	cb
4	Fri, Feb. 5	Structural homology	cb
5	Tue, Feb. 9	MOE to study barnase/barstar interactions	cw
6	Fri, Feb 12	Molecular dynamics	cw
7	Tue, Feb 16	Normal mode analysis	cw
8	Fri, Feb. 19	Electrostatic surfaces	cw
9	Tue, Feb. 23	Force field	cw
10	Fri, Feb. 26	Energy Minimization	cw
11	Tue, Mar. 2	Docking and drug discovery	cw
12	Fri, Mar. 5	Virtual screening, Random sampling and Replica exchange MD	cw
13	Tues, Mar. 9	Review	cw
14	Fri, Mar. 12	Mid-term exam	
15	Tue, Mar. 16	Dr. Nilesh Banavali: structure-function problems	cw
16	Fri, Mar. 19	Dr. Hongmin Li: structure-based drug design	cw
17	Tue, Mar. 23	Covalent drugs and fragment-based drug discovery	cw
18	Fri, Mar. 26	Protein local structure	cb
19	Tue, Mar. 30	Side chain rotamers	cb
20	Fri, Apr. 2	Homology modeling	cb
21	Tue, Apr. 6	Voids and waters	cb
22	Fri, Apr. 9	Validation of models	cb
23	Tue, Apr. 13	Phylogenetic analysis	cb
24	Fri, Apr. 16	Quaternary structure	cb
25	Tue, Apr. 20	Modeling nucleic acids	cb
26	Fri, Apr. 23	Protein design workshop	cb
27	Tue, Apr. 27	Student presentations	
28	Fri, Apr. 30	Review	cb
	TBD	Final exam	
	I.	I .	

^{*} course website on lms.

Grading criteria for BIOL/BCBP 4550 95-100: A, 90-94:A-, 85-89:B+, 80-84:B, 75-79:B-,70-74:C+,65-69:C,60-64:C-, 55-59:D+,50-54:D,0-49:F.

Grading criteria for BIOL/BCBP 6420 95-100: A, 90-94:A-, 85-89:B+, 80-84:B, 75-79:B-,70-74:C+,65-69:C,60-64:C-, 0-59:F.

COVID-19 related policy:

RPI is committed to the health and safety of all students. RPI will continue to monitor any new developments with COVID-19 and determine a course of action that will uphold the well-being of students while maintaining a quality educational experience.