Human Population 2018

Lecture 7
The Biosphere ECOME.

Boom-bust cycles.

Limits.

Regeneration of renewable resources.

Lamarckian evolution.

Questions on the reading?

pp 51-86

Sustainability
Sinks and sources
water
forests
ecosystem services

8 people lived in the biosphere, 1991-1993

Life is a carbon cycle

The global food web as a carbon cycle

Bystroff C, DeLuca S, & McDaniel CN (2005) ECOME: A simple model for an evolving consumption web. *IEEE Computational Systems Bioinformatics Conference - Workshops* 8-11 Aug. 2005 pp 260 - 261

stocks are populations of animals and plants

How does it work?

Species are measured in units of "biomass"

area of circle = population

plants are green

 Species can be autotrophs (green) or heterotrophs (red)

plants reduce CO2

Plants catalyze* CO₂ --> CH

Plants grow proportional to biomass.

^{*}RuBisCo is the enzyme responsible for this. In chloroplasts.

global limit on plant growth

The sun's maximum total input to the food web is fixed.

All plants stop growing when the sum total biomass ≥ sun limit*

carbon being added to plant

^{*}This could have been modeled differently. In reality plants shade each other to death, competing for light. We're ignoring plant/plant competition. Is simplifying OK?

flows are predation (eating) = reduced carbon transfer

 Primary consumers (herbivores) get biomass from plants

Secondary consumers (carnivores) get biomass from other animals.

etc.

direction of arrow is prey --> predator

• Predator species collapse when prey is scarce, Part 1.

• Predator species collapse when prey is scarce, Part 2.

• Predator species collapse when prey is scarce, Part 3.

• Only fed fraction grows

fed fraction

• Predator species collapse when prey is scarce, Part 4.

Unfed fraction dies.

• Predator species collapse when prey is scarce, Part 5.

...becomes CO₂.

Collapse happens on the **next** cycle, since almost all the food is gone.

• Predator species collapse when prey is scarce, Part 6.

Collapse happens on the **next** cycle, since all the food is gone.

Results of ECOME simulations (no limits on predation.)

• Holling response functions modify predator/prey relationship. Model prey availability as a function of prey density.

• Results of ECOME simulations with <u>Hollings functions</u> to limit predation.

Hollings functions favor prey over predators. Plants dominate. Animals collapse.

Canadians versus Cod. Holling response function Type 3 applied to commercial fishing, but...

What if we allow evolution?

- New species chooses prey randomly, proportional to biomass.
- New species adapts against a predator.

ECOME: boom/bust cycles

Results of ECOME simulations with <u>evolution</u>.

Why are populations inherently *unstable?*

- Predators consume in proportion to population
- Prey recover in proportion to population
- As population of predators increases, predation increases, therefore prey decreases, therefore prey recovery decreases, leading to collapse.

ECOME log(biomass) vs time.

How does evolution make ecosystems dynamically stable?

- Evolution cuts predator/prey relationships,
 makes new predator/prey relationships.
- Newly evolved species have fewer predators, increase in population.
- Older species have more predators, are more subject to collapse.
- Collapse of old species releases resources for new species.
- Inherent collapse still happens, but newly evolved species escape.

Results of ECOME simulations with <u>large systems</u> and <u>evolution</u>.

100%

boom/bust upon depletion of food resources_{ge mammal with no predators}

Yeast in 10% sugar solution

Assumed population of the St. Matthew Island reindeer Herd. Actual counts are indicated on the population curve.

The Seneca Cliff

• "It would be some consolation for the feebleness of our selves and our works if all things should perish as slowly as they come into being; but as it is, increases are of sluggish growth, but the way to ruin is rapid." Lucius Anneaus Seneca*, Letters to Lucilius, n. 91. Rome, 4BC-65AD.

Irish Potato Famine

A Seneca Cliff?

Seneca cliff in Irish Potato famine

- What caused the famine?
- Why did famine happen so quickly?

Boom/bust oscillations though co-evolution of predator and prey

Hollings function (hiding) prevents total collapse of the hare. Relatively rapid growth rate if the hare prevents collapse of the lynx.

Prediction for humans?

What makes humans different?

Humans evolve by
passing down
knowledge instead of
genes. Cultural
evolution is faster
than genetic evolution!

Genetic evolution is Darwinian

Animal/plant traits are inherited genetically, mostly.

Cultural inheritance is Lamarckian

Lamarckian evolution

(not true)

Lamarckian evolution

(true!)

HUMAN CULTURE evolved by Lamarckian mechanisms

1. EDUCATION: Humans evolve beneficial traits without speciating.

2. COMMUNICATION: Humans trade without boundaries, consume from anywhere.

3. DEFENSE: Humans eliminate their own predators.

4. POPULATION CONTROL: Humans control their growth rate?

ECOME: Introducing hyper-evolution

Results of ECOME simulations with <u>Humans</u> and <u>Lamarckian</u> <u>evolution</u>.

Modeling the global ecological footprint

in-class exercise: modeling nature under human impact

regeneration: slider from 0 to 1 (growth rate of [eco capital]).

Earth Max: set to 1.2e10

Impact: Fix(Rand(6e8,7.5e8))

ecological footprint: [Impact]

biocapacity: (([Earth Max]-[eco capital])/[Earth Max])*[regeneration]*[eco capital]

simulation settings

Hollings Type 2

Years, zero to 500, Pause interval 50, Display [log EC]

Do sensitivity analysis on [Impact], then on [regeneration]

- 1. regeneration: 0.20, Fix(Rand(6e8,7.5e8))
- 2. regeneration: Fix(Rand(0.15,0.25)), Impact: 7e8

Your ecological footprint

http://www.footprintnetwork.org/resources/footprint-calculator/

Calculate your ecological footprint.

Share with the class.